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Abstract— Stabilizability of linear time invariant networked
systems of general structure is studied with an observer-based
approach. In the assumption of piecewise constant controls an
average consensus network distributes input information to all
agents enabling them to build local observers on the basis of
which stabilizing gains are computed with recourse to standard
centralized methodology. Stabilizability conditions are found for
sampled-data and for discrete-time systems.

I. INTRODUCTION

As established by the pioneeering work of [15], stabiliz-
ability of decentralized systems requires absence of so called
unstable decentralized fixed modes. Under this condition -
which plays at the local level the same role as stabilizability
and detectability play at the centralized level - much of
the effort has been directed to the design of compensators
(static, dynamic, time varying, linear or non-linear) best
suited to exploit the particular structure of the problem at
hand [1],[6],[3],[4]. The presence of fixed modes can be
algebraically characterized [2] through a combinatorial check
which, although manageable [11], is more complex than
stabilizability or detectability in the centralized framework.
The real difficulty however is the actual computation of the
compensator parameters. Even in the linear feedback case
the block-diagonal structure of the gain matrix K introduces
constraints that destroy the X,Y convex parametrization
(XK = Y ) holding in the centralized case. More recently,
developments in networked control [12] and hybrid systems
[8] have shown the convenience of observer based control
schemes. In principle, if the state can be sufficiently well
approximated by each agent, a centralized stabilizing gain
(in the linear case) can be assumed to be commonly known
to all agents. Exploiting this common knowledge, cooper-
ating agents can solve the problem with considerably less
computational effort. However when the control input is the
sum of individual contributions from different agents, the
centralized approach to observer design fails due to the lack
of knowledge of control inputs used by other agents. Among
the several works devoted to this problem, e.g. [7], [16]
and refs. therein, two main approaches are available. The
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first is to reconstruct the input and the initial state from
individual observations by left invertibility (or similar geo-
metric properties) of the individual control systems [13],[14].
This however imposes restrictive conditions on the system
matrices and even when these are satisfied, the reconstruction
of the current state from agent i must enable her/him to
stabilize the system, i.e. local stabilizability is needed. A
second approach is to use communication among agents
to supply the missing information. The approach offers
potential advantages both in terms of robustness and compu-
tational effort. For example the stabilization of a formation
of vehicles exchanging information with first neighbours
has been recently formulated as a robust control problem
[5]. However for systems of general structure a similar
characterization is yet not known. The question of interest is
to assess what can be achieved under a given - typically
parsimonious - communication protocol for a system of
general structure. In this paper a linear time invariant system
of general structure is driven by the the input of r agents
who privately observe the state, have no information of other
agent’s inputs, but exchange information through a consensus
network, as described in Sec. III. In the assumption that
inputs are kept piecewise constant, they can be propagated
through the network and allow each agent to build a local
state observer, on the basis of which the control is generated
via the solution to a centralized stabilizaton problem. We
consider the problem first in a sampled-data setting (Sec. IV-
A) and then in the discrete-time setting (Sec. IV-B). In the
first case a minimum information exchange rate to stabilize
the system is determined. In the second case a necessary
and sufficient condition for a stabilizing solution is found.
It is shown that stabilizability under information exchange
is possible only if a condition - generalizing absence of
unstable decentralized fixed mode in the no-information case
- is satsfied. A numerical example illustrates the results in
Sec. V and conclusions are drawn in Sec. VI.

NOTATION. 1 is the vector with all components equal to
1, In is the identity matrix of order n, vec(Z) is the vector
obtained by stacking the columns of matrix Z; Kronecker
product is denoted by ⊗; the block-diagonal matrix with n
identical blocks Z is denoted diagn(Z) = In ⊗ Z. When
blocks are different we use diag(Z1 . . . Zr) or, diag(Zi) if



no ambiguity arises; int(z) is the integer part of the real
number z.

Acronym LMI stands for linear matrix inequality; DFM
for decentralized fixed mode.

II. DEFINITIONS

The class of systems we consider in this paper is defined
by

∂x = Ax+Bu, (1)
y = Cx, x ∈ Rn, u ∈ Rm, y ∈ Rp (2)

where

B = [B1 | . . . |Br] C =

 C1

...
Cr

 (3)

with Bi ∈ Rn×mi , Ci ∈ Rpi×n and
∑
pi = p,

∑
mi = m

and ∂ time-derivative in continuous time or delay operator
in discrete time. We assume controls and observations are
distributed among r agents. Each agent observes yi ∈ Rpi ,
exchanges information with other agents and exerts control
ui ∈ Rmi . Agent i has no direct knowledge of uj or yj .

Assume agents communicate through a strongly connected
graph G = (V,E) whose nodes V = {1, 2, . . . , r} represent
agents and edges E ⊂ V × V represent transmission links.
We denote Ni = {j : {i, j} ∈ E} the neighbour nodes to i.

Assumption 1
i. (A,B) is stabilizable.

ii. (A,Ci) is detectable for all i.
Stabilizability is a necessary condition for distributed stabi-
lization. As to local detectability, we assume the information
exchange among agents concerns inputs not outputs. By
keeping inputs constant over certain time intervals, this
permits to exploit the averaging properties of consensus
networks to enable agents reconstruct the state.

Remark 1: We do not assume (A,Bi) is stabilizable for
otherwise the distributed stabilization problem could be
entrusted to agent i and have a trivial solution - no commu-
nication would be necessary. Nevertheless, even if (A,Bi)
is stabilizable for some i, exchange of information and
distributed control can be highly beneficial to performance
and robustness.

III. CONSENSUS NETWORK

Let Adj be the adjacency matrix of G and W a weight
matrix of the same size as Adj with the property

Wij = Wji ≥ 0, W1 = 1, Wij = 0 if Adjij = 0.

Suppose we write on node i of G an initial row-vector
z′i(0) = {z1i z2i . . . zni} ∈ Rn . Consider the overwriting
scheme

zki(t+ 1) = zki(t) +
∑
j∈Ni

Wij(zkj(t)− zki(t)) (4)

k = 1, . . . , n; i = 1, . . . , r.

Each node updates itself by adding a weighted sum of
the local discrepancies, i.e. differences between neighboring
node values and its own.

By using Kronecker products, the scalar results in [17] can
be vectorized.

Theorem 2: The vector consensus dynamics

z(t+ 1) = Wz(t), z =

 z1

...
zr

 ∈ Rrn (5)

W = W ⊗ In ∈ Rrn×rn

displays the averaging property

zi(t) = ciW
tz(0) =

1

r

r∑
k=1

zk(0) + εi(t)

εi(t) = ci([W
t − J ]⊗ In)z(0)

r∑
i=1

εi(t) = 0, ∀t ≥ 0

||εi(t)|| ≤ ρt||z(0)||

where ci = [0 . . . Ir . . . 0] ∈ Rr×nr, Ir in position i, J =
11′/r and ρ < 1 is the second largest eigenvalue of W in
absolute value.

Proof: Let

Z(t) =
[
z1(t) | . . . | zr(t)

]
=

 z11(t) . . . z1r(t)
...

...
zn1(t) . . . znr(t)

 ∈ Rn×r.

Using
∑
j∈Ni

Wij = 1, recursion (4) can be written

zki(t+ 1) =
∑
j∈Ni

Wijzkj(t)

or

Z ′(t+ 1) = WZ ′(t). (6)

Rewriting as Z(t + 1) = In Z(t)W and using a known
property of Kronecker product we get

vec(Z(t+ 1)) = W ⊗ In vec(Z(t)).

Recognizing vec(Z) = z we get (5). Since zi = ciZ
′

zi(t) = ciW
tZ ′(0) = ciJZ

′(0) + ci(W
t − J)Z ′(0)

=
1

r

r∑
i=1

zi(0) + ci([W
t − J ]⊗ In)z(0).

Moreover, ci = c′i ⊗ In where c′i is the i-th row of Ir.
Therefore∑

i

ci =
∑
i

(c′i ⊗ In) = (
∑
i

c′i)⊗ In = 1′ ⊗ In

and distributing ⊗∑
i

ci([W
t − J ]⊗ In)z(0) = [1′W t − 1′J ]⊗ Inz(0) = 0.



Finally

||εi(t)|| = ||ci([W t − J ]⊗ In)z(0)|| = ||(W t − J)z(0)||
≤ ||W t − J || · ||z(0)||

and the characterization ||W t − J || = ρt is well known.
Remark 3: Essentially (6) describes the matrix-form dy-

namics of r parallel consensus protocols. The equivalent
vector-form (5) is derived for its convenience in the devel-
opments to follow.
Our approach is based on a consensus network to help each
agent reconstruct the input used by other agents, in the
assumption that over intervals of length µ all agents keep
their inputs constant. Model (1-3) together with W will
henceforth be called a distributed control system (S,W ).

Problem Statement: Find conditions for which it is pos-
sible to stabilize (S,W ) by piecewise constant control on
the basis of information exchanged among r agents over a
consensus network.

It turns out that the problem is more easily solved for
sampled-data systems than for discrete-time systems.

IV. DISTRIBUTED STABILIZING CONTROLLER

A. Sampled data systems

Let ∂x = ẋ in (1,2) and consider the continuous time
system

ẋ = Acx+Bcu

y = Cx.

with (Ac, Bc) stabilizable and (Ac, Ci) detectable for all i.
The associated sampled-data system is

xk+1 = Axk +Buk

yk = Cxk

where A = eAc∆, B =
∆∫
0

eAc(∆−τ)Bcdτ . By the results in

[9], stabilizability of (Ac, Bc) and detectability of (Ac, Ci)
is preserved for (A,B) and (A,Ci) for almost all sampling
periods. Suppose agents are connected through a consensus
network like (5) with initial condition

z(0) = r

 B1u1,k

...
Brur,k

 .
If updates in (5) occur at a ”chat-rate” µ

∆ - that is µ times
per sample-time - from Thm 2 agent i receives an estimate
of Buk

vi,h = Buk + εi,h, ||εi,h|| ≤ ρσ||rBuk|| (7)

at each time t = h µ∆ , h = 0, 1 . . . where σ = h −
int
(
h−1
µ

)
µ. Hence at time t = k∆

vi,k = Buk + εi,k, ||εi,k|| ≤ ρµ||rBuk||. (8)

Suppose the state xk is not known. Consider a ”node”
observer

λi,k+1 = Aλi,k + vi,k +Ri (Cλi,k − yi,k)

and define an estimation error

ei,k = λi,k − xk

Subtracting xk+1 = Axk −Buk

ei,k+1 = (A+RiCi)ei,k + vi,k −Buk
= (A+RiCi)ei,k + εi,k, ||εi,k|| ≤ ρµ||rBuk||

Suppose
ui,k = Kiλi,k = Ki(ei,k + xk)

then, letting

K =

 K1

...
Kr

 K =

 K1

. . .
Kr

 ,

xk+1 = (A+BK)x+BKek

ek+1 = Aek + ε̂k,

where ε̂k = vec(εi,k), A = diag(A+RiCi).

Letting ξ =

[
x
e

]
ξk+1 =

[
A+BK BK

0 A

]
ξk +

[
0
ε̂k

]
. (9)

Since (A,B) is stabilizable, and (A,Ci) is detectable, i =
1, . . . , r there exist gains Ri and K such that the matrix in
(9) is Schur-stable. Let

Ã =

[
A+BK BK

0 A

]
(10)

Theorem 4: For any stabilizing gains Ri and K, there
exists µ such that all the trajectories of system (9) asymp-
totically converge to the origin.

Proof: Since Ã is Schur-stable, then ÃΩ ⊂ λΩ for
some ellispoid Ω and for some λ ∈ (0, 1). Therefore ∀ξ ∈
Ω, and ∀λ̂ ∈ (λ, 1) there exists a sufficiently small ε such
that Ãξ + ε ‖ξ‖B ⊂ ÃΩ + εβ B ⊂ λ̂Ω, with B a ball in the
appropriate space and where β = maxξ∈Ω ‖ξ‖. Since εi,k ∈
ρµ ‖rBK‖βB then ε̂k ∈ ρµ ‖rBK‖ r

1
2 βB, by definition of

ε̂k, and the result follows.
For given Ri,K it is of interest to estimate the minimum
chat-rate guaranteeing Schur-stability.

Theorem 5: Let Ri,Ki be given. For any positive scalars
p, α, λ < 1 satisfying the LMI

Q > 0

(1 + p)ÃQÃ′ + (1 + p−1)α2

[
0 0
0 1

]
< λ2Q

the chat-rate of µ = ln γ
ln ρ , γ = α/ ‖rBK‖ r 1

2 times per
sample guarantees Schur-stabilty of (S,W ).



Proof: Let P,Q > 0 and let E(Q) = {x : x′Q−1x ≤
1}. We recall [10]

E(P ) ⊂ E(Q)⇔ P < Q

ÃE(Q) = E(ÃQÃ′)

E(Q) + E(P ) ⊂ E((1 + p)Q+ (1 + p−1)P ), ∀p > 0.

Schur-stability of (9) holds if for some Ω

ÃΩ + α

[
0 0
0 1

]
B ⊂ λΩ.

Letting Ω = E(Q), B = E(I) in the above inclusion
we get the LMI in the statement. Recalling that ε̂k ∈
ρµ ‖rBK‖ r 1

2 βB the conclusion follows.

B. Discrete-time systems

Let ∂x = x(t+ 1) in (1,2) and consider the discrete-time
system

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t).

Let µ be a positive integer and introduce intervals

Tk = {t : µk ≤ t < µk + µ)}, k = 0, 1, 2 . . .

Let tk = µk and uk = u(tk) be a control vector in Rm
that remains constant over the interval Tk. The µ-lifted state
evolves as

xk+1 = Aµxk + [I |A | . . . |Aµ−1]

 Buk
...

Buk


= Aµxk +AµBuk (11)

having set Aµ =
∑µ
τ=1A

τ−1. Let ui,k ∈ Rmi be the ordered
components of the i-th subvector of uk ∈ Rm (m1 + · · · +
mr = m) that agent i keeps constant over Tk. Suppose at
each t ∈ Tk agent i receives an estimate vi(t) of Buk from
a consensus network like (5). If each node of the network is
initialized at zi(µk) = rBiui,k ∈ Rn, i = 1 . . . r, from Thm
2 we get

vi(µk + τ − 1) = ciW
τ−1Buk, τ = 1, . . . , µ (12)

B = diag(rBi).

If the state x(µk) = xk is not known in (11) it can be
estimated by a ”node” observer

λi,k+1 = Aµλi,k +Aµvi,k +Ri(Ciλi,k − yi,k) (13)

with input vi,k set equal to the last estimate of Buk available
to agent i after communication with its neighbours over Tk.
Using (12) in (13) we get

λi,k+1 = Aµλi,k +AµciW
µ−1Buk

+ Ri(Ciλi,k − yi,k). (14)

Defining an estimation error

ei,k = λi,k − xk

with xk evolving as in (11), we get

ei,k+1 = (Aµ +RiCi)ei,k

+ Aµ(ciW
µ−1B−B)uk. (15)

Combining (11,15)[
xk+1

ei,k+1

]
=

[
Aµ 0
0 Aµ +RiCi

] [
xk
ei,k

]
+

[
AµB

Aµ(ciW
µ−1B−B)

]
uk.

Introducing Bµ = AµB and

Aµ = diag(Aµ +RiCi)

Bµ =

 Aµ(c1W
µ−1B−B)
...

Aµ(crW
µ−1B−B)


the aggregated system evolves as[

xk+1

ek+1

]
=

[
Aµ 0
0 Aµ

] [
xk
ek

]
+

[
Bµ
Bµ

]
uk. (16)

Suppose there is a procedure (to be specified later) to
select K = [K1 . . .Kr], Ki ∈ Rmi×n which is common
knowledge to all agents. Then agent i can use a feedback
policy

ui,k = Kiλi,k = Ki(xk + ei,k) (17)

which results in an aggregated input

uk = Kxk + Kek.

Substituting in (16)

[
x
e

]+

=

[
Aµ 0
0 Aµ

] [
x
e

]
+

[
Bµ
Bµ

]
[K |K ]

[
x
e

]
(18)

we arrive at the conclusion
Theorem 6: The distributed stabilization problem with

piecewise constant control and observations every µ steps
has a linear feedback solution if and only if there exist R,K
stabilizing

M =

[
Aµ 0
0 Aµ

]
+

[
Bµ
Bµ

]
[K |K ]. (19)

Notice that this conclusion not necessarily implies the
assumption of local detectability or local stabilizability.

It is possible to generalize the decentralized stabilizability
condition given in [15] by the following

Theorem 7: The distributed stabilization problem with
piecewise constant control has a linear feedback solution
only if the triple (Fµ, Gµ, T ) with



Fµ =

[
Aµ 0
0 Aµ

]
∈ R(r+1)n×(r+1)n

Gµ =

[
Bµ
Bµ

]
∈ R(r+1)n×m

T =


I I 0 . . . 0
I 0 I . . . 0
...

. . .
I . . . I

 ∈ Rm×(r+1)n

has no unstable DFM wrt to the partition

Gµ = [G1 | . . . |Gr], Gi ∈ R(r+1)n×mi

T =

 T1

...
Tr

 , Ti ∈ Rmi×(r+1)n, i = 1, . . . , r.

Proof: Consider the identity

[
Bµ
Bµ

]
[K |K ]

=

[
Bµ
Bµ

]
K1 K1 0 . . . 0
K2 0 K2 . . . 0

...
. . .

Kr . . . Kr


=

[
Bµ
Bµ

]
diag(K1 . . .Kr)T

The conclusion follows from Theorem 1 of [15].
Notice that for µ = 1 (S,W ) = (S, I), i.e. there is no
exchange of information over the communication network
and our distributed system collapses to the decentralized
case studied in [15]. In that case, stabilizability is equivalent
to absence of unstable DFM of (S, I). Thus our results
generalize [15].

Notice that Thm 6 refers to the case in which eq (17)
is used in (16), i.e. the case of static linear feedback.
If one allowed for dynamic linear feedback, then the no
unstable DFM condition of Thm 7 would become necessary
and sufficient for distributed stabilizability of (S,W ) with
piecewise constant inputs.

V. EXAMPLE

The example below considers distributed stabilization of a
5-agent process, with agent i described by (A,Bi, Ci). Since
output information is not exchanged, we take for simplicity
Ci = C,∀i. Specifically, we consider a r = 5 agent system
of order n = 10 described (in aggregated form ) by

Fig. 1. Communication graphs

A =
1

5



1 0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 1 1 1 1
0 1 1 0 1 1 1 1 1 0
0 1 1 1 0 0 0 0 1 0
0 0 1 1 1 1 1 0 1 0
0 1 1 1 0 0 0 0 1 0
0 1 0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1 0 0
0 0 1 1 1 1 1 1 0 1
0 1 1 1 1 1 0 1 0 1



B =



0 1 0 0 0 0 0 0 0 0
1 1 −1 1 1 0 1 0 −1 1
1 −1 −1 −1 −1 −1 −1 −1 0 1
−1 1 0 0 −1 −1 1 0 −1 1

1 −1 −1 0 0 1 0 −1 1 1
0 1 −1 0 −1 −1 1 1 1 −1
−1 0 1 −1 1 −1 0 1 0 1
−1 −1 0 1 0 1 0 −1 0 0
−1 1 1 −1 0 0 −1 1 1 0
−1 1 1 −1 −1 1 1 0 −1 −1



Ci =



3 4 1 0 −2 −2 −3 3 3 −3
5 1 4 0 −1 5 0 −2 −3 3
2 4 0 −2 −4 −4 −1 −4 2 0
2 1 3 1 2 0 1 1 4 1
−3 −3 −2 1 3 2 3 −2 0 −2
−1 1 −2 4 −3 −2 0 −1 −4 0

4 −1 0 −1 2 2 2 −1 −4 5
5 3 0 3 3 2 2 1 4 −1
−1 2 −1 −3 0 3 1 −4 0 1


The first 2 columns of B (=B1) are assigned to agent 1; the

next 2 columns of B (=B2) to agent 2 etc; (A,Bi) is not
stabilizable for i = 1, . . . , 5; (A,B) is reachable, (A,Ci) is
observable, with Ci common to all agents. A is unstable with
maxi |λi(A)| = 1.1617. We consider three communication
graphs of decreasing connectivity, Fig 1 (a-c).

For each graph the maximum eigenvalue of the closed-
loop matrix M (eq (19)) in abs-value is shown in Fig 2, for
increasing values of µ. Matrices Ri,K have been determined
as Ri = YiX

−1
i and K = Y X̂−1 where

Xi = arg min
Yi,X>0

||X||[
X A′µX + C ′iYi

(A′µX + C ′iYi)
′ X

]
> 0

and

X̂ = arg min
Y,X>0

||X||[
X AµXi +BµY

(AµX +BµY )′ X

]
> 0.



Fig. 2. maxi |λi| vs µ. Left: (a); Center: (b); Right: (c)

Notice that stabilization is obtained by ”freezing” inputs
for about 5 periods in case (a) 12 periods in case (b) and 25
periods in case (c).

VI. CONCLUSION

Exchange of information over a consensus network per-
mits to design stabilizing controllers for distributed control
systems of general structure. In the assumption that inputs are
kept piecewise constant, they can be propagated through the
network and allow each agent to build a local state observer.
On the basis of the local estimates, a linear feedback con-
troller for each agent resulting in stability of the overall sys-
tem can be designed. In the case of sample-data systems the
feedback gains always exist under centralized stabilizability
and local detectability provided the information exchange is
fast enough. It is noteworthy that such gains can be computed
by solving a centralized problem, via standard off-line LMI
parametrization; whereas synthesising a controller without
information exchange might require a much more complex
(e.g., non convex and possibly on-line) computation. Here is
an instance of the trade-off between amount of local elabo-
ration vs. amount of transmitted information - distributed
average consensus being amongst the most parsimonious
transmission mechanisms available. In the case of discrete-
time systems, a stabilizing controller requires satisfaction
of a condition generalizing absence of unstable DFM to
the case of exchange of information. Unlike the sampled-
data case, local feedback gains may be computed from a
centralized stabilizing controller (as shown in the numerical
example) or may not. In that case one has to resort to a
controller of the same structure as in the no-information
case, e.g. a dynamic compensator with a block diagonal gain
matrix. When local stabilizability or local detectability fail,
the absence of unstable DFM in the no-information case
is a necessary (and sufficient) condition for existence of a

stabilizing controller.



Whether the same condition is necessary in presence of
information exchange remains to be explored. Our conjecture
is that it is not.
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